Intake and Exhaust Tuning

D. ABATA
BASED UPON S.C. SORENSEN
CHAPTER 7 SECTIONS 6 AND 7
Effect of Air Charge

- The single most factor effecting engine power is air charge. The effect of air charge on engine torque and power can be seen through a variety of casual-effects.

- Intake and exhaust tuning can have a significant effect on engine power. The application of intake and exhaust tuning are inevitably determined with both computational and experimental techniques. However it is important to understand the fundamental principles behind these iterative solutions to a relatively complex problem.

Figure 7.19: Simulated effect of increasing from 2 valves to 4 valves on the performance of the engine in 7.1.
Basic Concepts

• a sound wave is a pressure wave
• speed of sound – a pressure wave caused by a disturbance in the flow field travels at the speed of sound
• pressure waves are superimposed on the flow

Timing the rarefaction portion of the pressure wave to meet the timing of the source of pulsations (the engine) can have a beneficial or detrimental effect.
\[a = \sqrt{\frac{\gamma R_o T}{M}} \]

\[u = \pm \frac{2a_o}{\gamma - 1} \left[\left(\frac{\rho}{\rho_o} \right)^{\frac{\gamma - 1}{2\gamma}} - 1 \right] = \pm \frac{2a_o}{\gamma - 1} \left[\left(\frac{p}{p_o} \right)^{\frac{\gamma - 1}{2\gamma}} - 1 \right] = \pm \frac{2}{\gamma - 1} (a - a_o) \]

\[u_p = a \pm u = a_o \pm \frac{\gamma + 1}{2} u = a_o \left(1 \pm \frac{\gamma + 1}{\gamma - 1} \left[\left(\frac{\rho}{\rho_o} \right)^{\frac{\gamma - 1}{2\gamma}} - 1 \right] \right) \quad (7.50) \]

Figure 7.21: Simple representation of a disturbance superimposed on a propagating wave.
A. Two compression wave moving in opposite directions, about to meet.

B. The compression waves passing each other.

Figure 7.24: The intersection (superposition) of two compression waves. A. Before intersection. B. During the superposition.
Wave Reflections

Figure 7.25: A pressure wave approaching a closed end of a pipe.

Figure 7.26: Reflection of a compression wave at a closed end of a pipe.

Figure 7.27: Incident and reflected waves at the open end of a pipe.

Figure 7.28: Sudden change in the cross section area of the pipe.

Figure 7.29: Compression wave encountering a sudden expansion.
Pulse Timing

\[2L = \Delta t \cdot u_g \]
\[L = \frac{\Delta t \cdot u_g}{2} = \frac{\Delta \theta \cdot u_g}{2 \cdot 6 \cdot N} \approx \frac{180 \cdot 340}{2 \cdot 6 \cdot 6000} = 850 \text{mm} \]

(7.55)
(7.56)
(7.57)

Figure 7.33: The effect of intake pipe length on the simulated example for an equivalent two stroke engine speed of 6000 rpm.
Intake Manifold: Predictions and Experiment

Figure 7.34: A comparison between experimental filling efficiencies and those calculated by an intake manifold simulation program for the GM Quad 4 engine.
Figure 7.35: The effect of intake manifold length on engine torque and power at WOT. (Torque - solid lines, Power - dotted).
Figure 7.36: Pressure time histories as a function of engine speed near the intake valve for the 700 mm intake runner.
Practical Systems: Opel

Figure 7.42: Principle of the dual length system on a 6-cylinder inline Opel engine. Figure from MTZ.

Figure 7.43: Torque curve for the Opel 6 cylinder inline engine with the chamber valve in the open and closed position.
Practical Systems: Audi V6

Figure 7.44: Cross section of the engine and intake manifold system used on the Audi V6 engine (from MTZ).

Figure 7.45: Operational view of the Audi V6 intake manifold (From MTZ).
Monday's Quiz Chapter 5

5 Fuel Systems
 5.1 Fundamental Flow Principles 229
 5.2 Calculations with Fuel Injection Engines 230
 5.3 Introduction to Fuel Systems 233
 5.4 Diesel Injection Systems 234
 5.4.1 Fuel Compressibility 239
 5.4.2 Fuel Injection Examples 244
 5.5 Spark Ignition Systems ... 247
 5.5.1 Mixture Requirements 247
 5.5.2 Carburetors .. 249
 5.5.3 Electronically Controlled Fuel Injection 250
 5.6 Control of Spark Ignition Engines 250
 5.6.1 Introduction to Gasoline Injection 250
 5.6.2 Basic Principles of SI Injection Systems 251
 5.6.3 The Dynamics of Fuel Injection 253
 5.6.4 The Dynamics of Air Induction 256
 5.6.5 Control Strategies ... 259
 5.7 Problems .. 262

6 Exhaust Emissions ... 265
 6.1 SI Engine Emissions .. 266
 6.1.1 CO Emissions From SI Engines 266
 6.1.2 Unburned Hydrocarbons From SI Engines 266